NSTX edge-plasmas with a lithium coated divertor

T.D. Rognlien and G.D. Porter

FEP, Univ. Calif. Lawrence Livermore National Laboratory, Livermore, CA

Presented at the ALPS/PFC Meeting Chicago, IL Nov. 17-20, 2003

^{*} Work performed under the auspices of U.S. DOE by the Univ. of Calif. Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Effect of low-recycling is illustrated for an NSTX case

- Use 2D UEDGE fluid transport with kinetic corrections
- Begin with a base-case with high recycling (shot 109034, Porter)
 - P_{core} = 2 MW
 - D = $0.5 \text{ m}^2/\text{s}$, $\square = 1.5 \text{ m}^2/\text{s}$
 - -R = 1.0
 - Wall gas albedo = 0.95
 - Carbon impurity
- Solutions for R = 1.0, 0.9, 0.5, and 0.2 on outer divertor only

NSTX full-coverage Li modeling: Low recycling increases midplane temperatures by factor of ~2

- Low recycling decreases edge density for fixed source
- For R=0.2, □ ~ L_{||}
- Sputtering increases for low recycling (high T_e)

Increased edge temperature may reduce core turbulence

Peak divertor heat flux largely unchanged by R

- Direct energy loss from escaping particles scales as nT T^{1/2} = nT^{3/2} at the divertor
- For high collisionality, nT ~ constant along B-field
 - implies heat flux $\sim T^{1/2}$
- However, for low recycling,
 nT|_{midplane} >> nT|_{divertor}

Contamination of core from lithium divertor being modeled by coupling UEDGE & WBC MC code

- Heat and particle flux to module computed by UEDGE
- Temperature rise of Li surface from heat transfer (Ulrickson)
- Sputtering of Li from U. III. composite model (Allain et al.)
- WBC calculates lithium source near the divertor plate (Brooks)
- UEDGE uses this Li source to calculate lithium density throughout the edge region

NSTX divertor region + Li module

WBC Li sputtering shows lower density for low R_p (from J. Brooks)

- Smaller R_p gives lower hydrogen plate flux
- Lower electron density causes Li⁺ to peak farther from plate
- Parallel ambipolar electric field $E_{||}$ pushes Li⁺ back to divertor; $E_{||}$ is larger for R_p =0.2

Lithium flows throughout the SOL, but core boundary concentration appears low

- Lithium concentration peaks in outer SOL and private-flux regions
- Primary forces keeping Li in divertor are E_p & hydrogen drag
- Lower recycling good because
 - Lower sputtering hydrogen flux
 - Monotonic downward E_p;
 R=0.2 much better than R=0.9
 - Higher sputtering rate is bad

A substantial convective particle loss about the outer midplane can decrease effect of R

- Add a radial convective velocity increasing from 10 m/s --> 100 m/s from core --> wall
- Increased wall flux gives increased pumping (albedo=0.95) - model dependent
- Effectiveness of divertor pumping is decreased

Electron temperature

Summary

- Simulating low-recycling plasmas uses known modifications to fluid transport models
- Substantial increase in edge temperature is calculated
- Plasma convection shows some reduction of core-edge T increase
- Lithium contamination studies for NSTX begun
 - Impurity screening at low R aided by E_p & downward hydrogen flow
 - Role of convection on Li must be included